"How do you behave to mathematics?" - such questioning I conducted in spring of 2010. In questioning 70 persons took part from a number the visitors of the Russian blog of "Mathematician for blondes". Here I bring the results of questioning and comments to them.
Most appeared those, who loves mathematics - 21 percent. It makes happy. But I do not want, what all of them grew into ordinary mathematical robots. I think, here physicists prevail on storage of thought in the hands of good teachers. Here can be lyric poets in the hands of talented teachers.
Consider mathematics interesting science are 11 percents. Mathematical slavery does not threaten this category of students. When them it will be compelled intensively to decide different family tasks and examples - they quickly will say to mathematics "no" and will go away from mathematics a little rather. I think, lyric poets which drove mathematicians with teachers prevail here.
Indifferently behave to mathematics are 14 percents. It is victims of ineffectual teachers. Teachers indifferently expound educational material and require the same indifferent answers in reply. For it the teachers of mathematics need to put large two.
Consider mathematics bad science are 15 percents. It is victims of terror from the side of ineffectual teachers. Ineffectual teachers consider that mathematics all must know. Lyric poets on such violence answer a hatred. Personally exact sciences were much easier given me. Languages and literature I hated. From all long-term school course of languages I memorized only one: a rule of grammar is this large black spot in a textbook, which needs to be learned. From a look to these rules became me depressed.
Those, whoever knows about what mathematics is 9 percents. As I suppose, these are blondes. To them I belong. I also try to understand, what such the mathematics. An existent set governed and determinations personally me does not arrange already. Too much I am questions, on which mathematicians simply unable to give an answer. Simplest example. Increasing length of two perpendicular parties of rectangle, we get meters square and we get an area. Increasing length of two parallel parties, we get meters square but we do not get the area of rectangle. Why? An answer "so can not be done" me does not arrange. An answer "so can not be done" me does not arrange. It is so "possible", and it is so "impossible" is already not mathematics, it is a spiritualistic session.
No comments:
Post a Comment